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Outline

1 Bayesian formulation of fractional inverse problems.
2 Data driven discretization of forward maps.
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This presentation mostly based on:
1 The Bayesian Formulation and Well-Posedness of Fractional

Elliptic Inverse Problems (2017 Inverse Problems) with D.
Sanz-Alonso.

2 Data driven discretizations of forward maps in Bayesian
inverse problems (In preparation) with D. Bigoni, Y. Marzouk
and D. Sanz-Alonso.
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Part 1: Bayesian formulation of
fractional inverse problems.
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Inverse problem: learn a permeability field from partial and noisy
observations of pressure field.

PDE version: Learn diffusion coefficient and order of a (FPDE)
based on partial and noisy observations of its solution.
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Inverse problem: learn a permeability field from partial and noisy
observations of pressure field.

PDE version: Learn diffusion coefficient and order of a (FPDE)
based on partial and noisy observations of its solution.

u = (s,A) F(u) O ◦ F(u)
G := O ◦ F

y = G(u) + Noise
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Inverse problem: learn a permeability field from partial and noisy
observations of pressure field.

PDE version: Learn diffusion coefficient and order of a (FPDE)
based on partial and noisy observations of its solution.

u = (s,A) F(u) O ◦ F(u)
G := O ◦ F

φ(y ;G(u))
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Forward map: p = F(u).

{
Ls

Ap = f , in D,
∂Ap = 0, on ∂D,

(1)

where ∂Ap := A(x)∇p · ν, and ν is the exterior unit normal to
∂D.
Observation map: O(p) := (p(x1), . . . , p(xn)) for some
xi ∈ D.
Noise model: φ(y ,G(u)) = exp

(
− 1

2γ2 ‖y − G(u)‖2
)
.
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Forward map: p = F(u).

{
Ls

Ap = f , in D,
∂Ap = 0, on ∂D,

(2)

where ∂Ap := A(x)∇p · ν, and ν is the exterior unit normal to
∂D.
Here,

Ls
Ap =

∞∑
k=1

λs
A,kpkψA,k .

Observation map: O(p) := (p(z1), . . . , p(zm)) for some
zi ∈ D.
Noise model: φ(y ,G(u)) = exp

(
− 1

2γ2 ‖y − G(u)‖2
)
.
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Bayesian approach to inverse problems

A. M. Stuart. Inverse problems: a Bayesian perspective.
(2010).
J. Kaipio and E. Somersalo. Statistical and computational
inverse problems (2006).
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Bayesian formulation

Prior: u ∼ πu

Likelihood model: πy |u

Bayes rule (informally):

νy (u) := πu|y ∝ πy |u · πu

Posterior distribution.
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νy is the fundamental object in Bayesian inference.

Estimates:
Eu∼νy (R(u))

Uncertainty quantification:

Varu∼νy (R(u))
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Advantages of Bayesian formulation

Well defined mathematical framework:
Stability (Well-posedness).
Posterior consistency (contraction rates, scalings for
parameters, etc).
Consistency of numerical methods.
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Prior

πu is a distribution on (0, 1)×H.
For example,

πu = πs ⊗ πA

A = ev Id , where v ∼ N(0,K )

Karhunen-Loeve expansion:

v =
∞∑

i=1
λK ,iζi Ψi , ζi ∼ N(0, 1).
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Well-posedness of Bayesian formulation

Theorem (NGT and D. Sanz-Alonso 17’)
Suppose that G is continuous in supp(πu). Then, posterior
distribution νy is absolutely continuous with respect to prior:

dνy (u) ∝ φ(y ;G(u))dπu(u),

Recall: G : (s,A)→ Rm.
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Well-posedness of Bayesian formulation

Theorem (NGT and D. Sanz-Alonso 17’)
Suppose that G ∈ L2

πu . Then the map

y 7→ νy

is Locally Lipschitz in the Hellinger distance. That is, For
|y1|, |y2| ≤ r we have

dhell (νy1 , νy2) ≤ Cr‖y1 − y2‖.
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Well-posedness of Bayesian formulation

The analysis reduces to studying stability through regularity of
FPDEs.

L. A. Caffarelli and P. R. Stinga. Fractional elliptic equations,
Caccioppoli estimates and regularity. (2016)
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Well-posedness and posterior consistency

M. Dashti and A. M. Stuart. Uncertainty quantification and
weak approximation of an elliptic inverse problem. (2011).
S. Agapiou, S. Larsson, and A.M. Stuart. Posterior
contraction rates for the Bayesian approach to linear ill-posed
inverse problems. (2013) .
S. Volmer. Posterior consistency for Bayesian inverse problems
through stability and regression results. (2013).
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Numerical methods: MCMC

Need a way to approximate expectations with respect to νy .
Standard procedure: MCMC.
Generate a path of a Markov chain with invariant distribution
νy : u1, . . . , uk , . . . and then use

1
k

k∑
i=1

R(ui )

However, careful with:
1 Discretization of u.
2 Discretization of forward map.
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Idealized MCMC algorithm

For the sake of simplicity assume A = ev · Id and known s ∈ (0, 1) .
Metropolis Hastings with pCN proposal:
Having defined vk , vk+1 is generated according to:

1 Proposal: ṽ =
√
1− β2vk + βξ, where ξ ∼ πv .

2 Acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;G(ũ)
φ(y ;G(uk))

}

3 vk+1 :=
{

ṽ with prob α(ũ, uk)
vk with prob 1− α(ũ, uk)
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Idealized MCMC algorithm

For the sake of simplicity assume A = ev · Id and known s ∈ (0, 1) .
Metropolis Hastings with pCN proposal:
Having defined vk , vk+1 is generated according to:

1 Proposal: ṽ =
√
1− β2vk + βξ, where ξ ∼ πv .

Compare to: ṽ = vk + βξ
S. L. Cotter, G. O. Roberts, A. M. Stuart, and D.
White. MCMC methods for functions: modifying old
algorithms to make them faster. Statistical Science.

2 Acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;G(ũ)
φ(y ;G(uk))

}

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and data-driven discretization of forward maps



Idealized MCMC algorithm
For the sake of simplicity assume A = ev · Id and known s ∈ (0, 1) .
Metropolis Hastings with pCN proposal:
Having defined vk , vk+1 is generated according to:

1 Proposal: ṽ =
√
1− β2vk + βξ, where ξ ∼ πv .

Compare to: ṽ = vk + βξ
S. L. Cotter, G. O. Roberts, A. M. Stuart, and D.
White. MCMC methods for functions: modifying old
algorithms to make them faster. Statistical Science.
Robustness to truncation:

ξ =
L∑

i=1
λK ,iζi Ψi , ζi ∼ N(0, 1)

2 Acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;G(ũ)
φ(y ;G(uk))

}
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Part 2: Data driven discretization of
forward maps
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u F(u) O ◦ F(u)
G := O ◦ F

φ(y ;G(u))
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MCMC: Metropolis with pCN proposal

To produce uk+1:
1 Proposal: ũ =

√
1− β2uk + βξ , ξ ∼ πu.

2 Compute acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;G(ũ)
φ(y ;G(uk))

}

3 uk+1 :=
{

ũ with prob α(ũ, uk)
uk with prob 1− α(ũ, uk)
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MCMC:Metropolis with pCN proposal

To produce uk+1:
1 Proposal: ũ =

√
1− β2uk + βξ , ξ ∼ πu.

2 Compute acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;GX (ũ)
φ(y ;GX (uk))

}

3 vk+1 :=
{

ṽ with prob α(ũ, uk)
vk with prob 1− α(ũ, uk)
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MCMC:Metropolis with pCN proposal

To produce uk+1:
1 Proposal: ũ =

√
1− β2uk + βξ , ξ ∼ πu.

2 Compute acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;GX (ũ)
φ(y ;GX (uk))

}

3 uk+1 :=
{

ũ with prob α(ũ, uk)
uk with prob 1− α(ũ, uk)

How do we choose the discretization? How fine?
Inhomogeneous in space?
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(u,X ) FX (u) O ◦ F(u)
GX := O ◦ FX

φ(y ;GX (u))
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(u,X ) FX (u) O ◦ F(u)
GX := O ◦ FX

φ(y ;GX (u))

More specifically: X = (N, {x1, . . . , xN}).
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True and Surrogate Bayesian inverse problems

Prior: u ∼ πu.
Likelihood: φ(y ;G(u))
Posterior:

dνy (u) ∝ φ(y ;G(u))dπu(u)

Prior: (u,X ) ∼ πu,X .
Likelihood: φ(y ;GX (u))
Posterior:

dνy (u,X ) ∝ φ(y ;GX (u))dπu,X (u,X )
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Prior for surrogate problem

For simplicity our prior takes the form:

πu,X = πx1,...,xN |N · πN · πu.

πu is as for the true problem.
πu,X treats X and u independently.
πx1,...,xN |N = dx1 . . . dxN on DN .
πN takes into account cost of discretization of F using N
elements:

πN ∝ exp(−C(N))
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Likelihood

φ(y ;GX (u))

Recall GX = O ◦ FX .
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Likelihood

φ(y ;GX (u))

Recall GX = O ◦ FX .
However, we don’t triangulate directly using X . First, we regularize
the points x1, . . . , xn.
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Likelihood

φ(y ;GX (u))

Recall GX = O ◦ FX .
However, we don’t triangulate directly using X . We regularize the
points x1, . . . , xn.
X = ({x1, . . . , xn},N) induces a density estimator ρX .

1 ρX is used to choose points in a master grid.

or
2 Using ρX we start a flow of the points x, . . . , xn attempting to

minimize an energy of the form:

E (x1, . . . , xn) ∼
∑
i ,j

exp(−|xi − xj |2/(hN · ρX (xi ))2)
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Sampling from νy(u,X )

Metropolis within Gibbs:
Alternate:

1 Update the unknown; discretization is fixed. u|X , y
2 Change distribution of elements. x1, . . . , xN |N, u, y
3 Coarsen or refine discretization. x1, . . . , xN ,N|u, y
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Update u

Given (uk ,Xk) produce uk+1 by:
1 Proposal: ũ =

√
1− β2uk + βξ , ξ ∼ πu.

2 Compute acceptance probability:

α(ũ, uk) := min
{
1, φ(y ;GXk (ũ)
φ(y ;GXk (uk))

}

3 uk+1 :=
{

ũ with prob α(ũ, uk)
uk with prob 1− α(ũ, uk)
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Change distribution of elements

Given (uk ,Xk) produce xk+1
1 , . . . , xk+1

N by:
1 Proposal: x̃i = xi + F (xi ) , for all i = 1, . . . ,N.

F := (Ψ1,Ψ2) ∼ N(0,K1 ⊗ K2)
2 Compute acceptance probability:

α(X̃ ,Xk) := min
{
1,

φ(y ;GX̃ (uk)
φ(y ;GXk (uk)) ·

p(Xk |X̃ )
p(X̃ |Xk)

}

3 Xk+1 :=
{

X̃ with prob α(X̃ ,Xk)
Xk with prob 1− α(X̃ ,Xk)
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Coarsen or refine discretization
Given (uk ,Xk) we produce Nk+1 and xk+1

1 , . . . , xk+1
Nk+1

by:

1 Proposal: First construct ρX and generate Ñ ∼ p(·|Nk).
If Ñ < N let x̃i = xi for i = 1, . . . , Ñ.
If Ñ ≥ N let x̃i = xi for i = 1, . . . ,N and generate x̃N+j ∼ ρX
for j = 1, . . . , Ñ − N.

2 Compute acceptance probability:

α(X̃ ,Xk) := min
{
1,

φ(y ;GX̃ (uk)
φ(y ;GXk (uk)) · p(X , X̃ )

·p(Ñ|Nk)
p(Nk |Ñ)

· exp(−C(Ñ))
exp(−C(N))

} (3)

3 Xk+1 :=
{

X̃ with prob α(X̃ ,Xk)
Xk with prob 1− α(X̃ ,Xk)
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Conclusions and future work

1 Bayesian formulation of fractional inverse problems.
2 Data driven discretization of forward maps.
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Thank you for your attention!

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and data-driven discretization of forward maps


