On the Bayesian formulation of fractional inverse problems and data-driven discretization of forward maps

> Nicolás García Trillos Brown University

Fractional PDEs: Theory, Algorithms and Applications ICERM June 18th 2018

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and d

- Bayesian formulation of fractional inverse problems.
- ② Data driven discretization of forward maps.

伺 ト イヨト イヨト

This presentation mostly based on:

- The Bayesian Formulation and Well-Posedness of Fractional Elliptic Inverse Problems (2017 Inverse Problems) with D. Sanz-Alonso.
- Data driven discretizations of forward maps in Bayesian inverse problems (In preparation) with D. Bigoni, Y. Marzouk and D. Sanz-Alonso.

Part 1: Bayesian formulation of fractional inverse problems.

Inverse problem: learn a permeability field from partial and noisy observations of pressure field.

PDE version: Learn diffusion coefficient and **order** of a (FPDE) based on partial and noisy observations of its solution.

Inverse problem: learn a permeability field from partial and noisy observations of pressure field.

PDE version: Learn diffusion coefficient and **order** of a (FPDE) based on partial and noisy observations of its solution.

$$u = (s, A) \longrightarrow \mathcal{F}(u) \longrightarrow \mathcal{O} \circ \mathcal{F}(u)$$
$$\mathcal{G} := \mathcal{O} \circ \mathcal{F}$$

$$y = \mathcal{G}(u) + Noise$$

Inverse problem: learn a permeability field from partial and noisy observations of pressure field.

PDE version: Learn diffusion coefficient and **order** of a (FPDE) based on partial and noisy observations of its solution.

$$u = (s, A) \longrightarrow \mathcal{F}(u) \longrightarrow \mathcal{O} \circ \mathcal{F}(u)$$
$$\mathcal{G} := \mathcal{O} \circ \mathcal{F}$$
$$\phi(y; \mathcal{G}(u))$$

• • = • • = • = •

• Forward map: $p = \mathcal{F}(u)$.

$$\begin{cases} L_A^s p = f, & \text{in } D, \\ \partial_A p = 0, & \text{on } \partial D, \end{cases}$$
(1)

where $\partial_A p := A(x) \nabla p \cdot \nu$, and ν is the exterior unit normal to ∂D .

- **Observation map:** $\mathcal{O}(p) := (p(x_1), \dots, p(x_n))$ for some $x_i \in D$.
- Noise model: $\phi(y, \mathcal{G}(u)) = \exp\left(-\frac{1}{2\gamma^2} \|y \mathcal{G}(u)\|^2\right)$.

▲御▶ ▲ 国▶ ▲ 国▶ - 国 - 釣Q(や

• Forward map: $p = \mathcal{F}(u)$.

$$\begin{cases} L_A^s p = f, & \text{in } D, \\ \partial_A p = 0, & \text{on } \partial D, \end{cases}$$
(2)

where $\partial_A p := A(x) \nabla p \cdot \nu$, and ν is the exterior unit normal to ∂D .

Here,

$$L_A^s p = \sum_{k=1}^\infty \lambda_{A,k}^s p_k \psi_{A,k}.$$

- **Observation map:** $\mathcal{O}(p) := (p(z_1), \dots, p(z_m))$ for some $z_i \in D$.
- Noise model: $\phi(y, \mathcal{G}(u)) = \exp\left(-\frac{1}{2\gamma^2} \|y \mathcal{G}(u)\|^2\right)$.

同 ト イ ヨ ト イ ヨ ト ・ コ ・ つ へ (や

- A. M. Stuart. Inverse problems: a Bayesian perspective. (2010).
- J. Kaipio and E. Somersalo. Statistical and computational inverse problems (2006).

伺下 イヨト イヨト

- Prior: $u \sim \pi_u$
- Likelihood model: $\pi_{y|u}$
- Bayes rule (informally):

$$\nu^{y}(u) := \pi_{u|y} \propto \pi_{y|u} \cdot \pi_{u}$$

Posterior distribution.

• • = • • = •

- $\nu^{\rm y}$ is the fundamental object in Bayesian inference.
 - Estimates:

$$\mathbb{E}_{u\sim \nu^{y}}\left(R(u)\right)$$

• Uncertainty quantification:

 $Var_{u\sim
u^{y}}\left(R(u)
ight)$

A B M A B M

Well defined mathematical framework:

- Stability (Well-posedness).
- Posterior consistency (contraction rates, scalings for parameters, etc).
- Consistency of numerical methods.

- π_u is a distribution on $(0,1) \times \mathcal{H}$.
- For example,

$$\pi_u = \pi_s \otimes \pi_A$$

 $A = e^{v} I_d, \quad ext{where } v \sim N(0, K)$

• Karhunen-Loeve expansion:

$$\mathbf{v} = \sum_{i=1}^{\infty} \lambda_{K,i} \zeta_i \Psi_i, \quad \zeta_i \sim \mathcal{N}(0,1).$$

(日本) (日本) (日本)

э

Theorem (NGT and D. Sanz-Alonso 17')

Suppose that \mathcal{G} is continuous in supp (π_u) . Then, posterior distribution ν^y is absolutely continuous with respect to prior:

 $d\nu^{y}(u) \propto \phi(y; \mathcal{G}(u)) d\pi_{u}(u),$

Recall: \mathcal{G} : $(s, A) \rightarrow \mathbb{R}^m$.

Theorem (NGT and D. Sanz-Alonso 17')

Suppose that $\mathcal{G} \in L^2_{\pi_u}$. Then the map

 $y \mapsto \nu^y$

is Locally Lipschitz in the Hellinger distance. That is, For $|y_1|, |y_2| \leq r$ we have

$$d_{hell}(\nu^{y_1}, \nu^{y_2}) \leq C_r \|y_1 - y_2\|.$$

The analysis reduces to studying stability through regularity of FPDEs.

• L. A. Caffarelli and P. R. Stinga. Fractional elliptic equations, Caccioppoli estimates and regularity. (2016)

- M. Dashti and A. M. Stuart. Uncertainty quantification and weak approximation of an elliptic inverse problem. (2011).
- S. Agapiou, S. Larsson, and A.M. Stuart. Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems. (2013).
- S. Volmer. Posterior consistency for Bayesian inverse problems through stability and regression results. (2013).

Numerical methods: MCMC

- Need a way to approximate expectations with respect to ν^{y} .
- Standard procedure: MCMC.
 Generate a path of a Markov chain with invariant distribution
 ν^y: u₁,..., u_k,... and then use

$$\frac{1}{k}\sum_{i=1}^{k}R(u_i)$$

- However, careful with:
 - Discretization of u.
 - ② Discretization of forward map.

For the sake of simplicity assume $A = e^{v} \cdot I_d$ and known $s \in (0, 1)$. **Metropolis Hastings with pCN proposal:** Having defined v_k , v_{k+1} is generated according to:

• Proposal: $\tilde{v} = \sqrt{1 - \beta^2} v_k + \beta \xi$, where $\xi \sim \pi_v$.

2 Acceptance probability:

(3)

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}(\tilde{u}))}{\phi(y; \mathcal{G}(u_k))}\right\}$$
$$v_{k+1} := \begin{cases} \tilde{v} & \text{with prob } \alpha(\tilde{u}, u_k) \\ v_k & \text{with prob } 1 - \alpha(\tilde{u}, u_k) \end{cases}$$

For the sake of simplicity assume $A = e^{v} \cdot I_d$ and known $s \in (0, 1)$. **Metropolis Hastings with pCN proposal:** Having defined v_k , v_{k+1} is generated according to:

• Proposal:
$$\tilde{v} = \sqrt{1 - \beta^2} v_k + \beta \xi$$
, where $\xi \sim \pi_v$.
Compare to: $\tilde{v} = v_k + \beta \xi$

S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions: modifying old algorithms to make them faster. Statistical Science.

2 Acceptance probability:

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}(\tilde{u}))}{\phi(y; \mathcal{G}(u_k))}\right\}$$

伺 ト イ ヨ ト イ ヨ ト

Idealized MCMC algorithm

For the sake of simplicity assume $A = e^{v} \cdot I_d$ and known $s \in (0, 1)$. **Metropolis Hastings with pCN proposal:** Having defined v_k , v_{k+1} is generated according to:

• Proposal: $\tilde{v} = \sqrt{1 - \beta^2} v_k + \beta \xi$, where $\xi \sim \pi_v$. Compare to: $\tilde{v} = v_k + \beta \xi$

S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions: modifying old algorithms to make them faster. Statistical Science. Robustness to truncation:

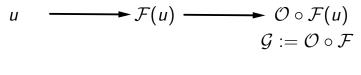
$$\xi = \sum_{i=1}^{L} \lambda_{\mathcal{K},i} \zeta_i \Psi_i, \quad \zeta_i \sim \mathcal{N}(0,1)$$

Acceptance probability:

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}(\tilde{u}))}{\phi(y; \mathcal{G}(u_k))}\right\}$$

Part 2: Data driven discretization of forward maps

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and d



 $\phi(y;\mathcal{G}(u))$

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and d

伺 ト イヨ ト イヨ ト

э.

MCMC: Metropolis with pCN proposal

To produce u_{k+1} :

9 Proposal:
$$ilde{u} = \sqrt{1-eta^2}u_k + eta\xi$$
 , $\xi \sim \pi_u$.

Ompute acceptance probability:

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}(\tilde{u}))}{\phi(y; \mathcal{G}(u_k))}\right\}$$

$$u_{k+1} := \begin{cases} \tilde{u} & \text{with prob } \alpha(\tilde{u}, u_k) \\ u_k & \text{with prob } 1 - \alpha(\tilde{u}, u_k) \end{cases}$$

A 3 b

A 3 b

MCMC:Metropolis with pCN proposal

To produce u_{k+1} :

9 Proposal:
$$ilde{u} = \sqrt{1-eta^2}u_k + eta\xi$$
 , $\xi \sim \pi_u$.

Ompute acceptance probability:

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}_X(\tilde{u}))}{\phi(y; \mathcal{G}_X(u_k))}\right\}$$

$$\mathbf{0} \ v_{k+1} := \begin{cases} \tilde{v} & \text{with prob } \alpha(\tilde{u}, u_k) \\ v_k & \text{with prob } 1 - \alpha(\tilde{u}, u_k) \end{cases}$$

• • = • • = •

MCMC:Metropolis with pCN proposal

To produce u_{k+1} :

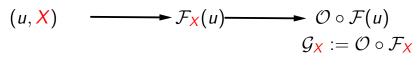
9 Proposal:
$$\tilde{u} = \sqrt{1 - \beta^2} u_k + \beta \xi$$
, $\xi \sim \pi_u$.

Ompute acceptance probability:

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}_{\mathcal{X}}(\tilde{u})}{\phi(y; \mathcal{G}_{\mathcal{X}}(u_k))}\right\}$$

How do we choose the discretization? How fine? Inhomogeneous in space?

何 ト イヨ ト イヨ ト

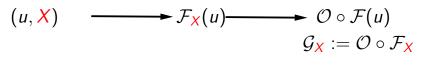


 $\phi(y; \mathcal{G}_{\mathbf{X}}(u))$

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and d

• • = • • = •

3



 $\phi(y; \mathcal{G}_{\mathbf{X}}(u))$

More specifically: $X = (N, \{x_1, \ldots, x_N\}).$

• • = • • = •

3

Prior: $u \sim \pi_u$. Likelihood: $\phi(y; \mathcal{G}(u))$ Posterior: Prior: $(u, X) \sim \pi_{u,X}$. Likelihood: $\phi(y; \mathcal{G}_X(u))$ Posterior:

 $d\nu^{y}(u) \propto \phi(y; \mathcal{G}(u)) d\pi_{u}(u)$

 $d\nu^{y}(u,X) \propto \phi(y;\mathcal{G}_{X}(u))d\pi_{u,X}(u,X)$

For simplicity our prior takes the form:

$$\pi_{u,X} = \pi_{x_1,\dots,x_N|N} \cdot \pi_N \cdot \pi_u.$$

- π_u is as for the true problem.
- $\pi_{u,X}$ treats X and u independently.
- $\pi_{x_1,...,x_N|N} = dx_1...dx_N$ on D^N .
- π_N takes into account cost of discretization of \mathcal{F} using N elements:

$$\pi_N \propto \exp(-C(N))$$

$\phi(y;\mathcal{G}_X(u))$

Recall $\mathcal{G}_X = \mathcal{O} \circ \mathcal{F}_X$.

ヘロト 人間 とくほ とくほ とう

3

$\phi(y;\mathcal{G}_X(u))$

Recall $\mathcal{G}_X = \mathcal{O} \circ \mathcal{F}_X$. However, we don't triangulate directly using X. First, we regularize the points x_1, \ldots, x_n .

伺 ト イヨ ト イヨ ト

э

$$\phi(y;\mathcal{G}_X(u))$$

Recall $\mathcal{G}_X = \mathcal{O} \circ \mathcal{F}_X$.

However, we don't triangulate directly using X. We regularize the points x_1, \ldots, x_n . $X = (\{x_1, \ldots, x_n\}, N)$ induces a density estimator ρ_X .

• ρ_X is used to choose points in a master grid.

or

Using \(\rho_X\) we start a flow of the points \(x_1, \ldots, x_n\) attempting to minimize an energy of the form:

$$E(x_1,\ldots,x_n)\sim \sum_{i,j}\exp(-|x_i-x_j|^2/(h_N\cdot\rho_X(x_i))^2)$$

同 ト イヨ ト イヨ ト ニヨ

Metropolis within Gibbs:

Alternate:

- **1** Update the unknown; discretization is fixed. u|X, y|
- **2** Change distribution of elements. $x_1, \ldots, x_N | N, u, y$
- **③** Coarsen or refine discretization. $x_1, \ldots, x_N, N|u, y$

Given (u_k, X_k) produce u_{k+1} by:

 $\ \, {\rm Proposal:} \ \, \widetilde{u}=\sqrt{1-\beta^2}u_k+\beta\xi \ \, , \ \xi\sim\pi_u. \ \ \,$

Ompute acceptance probability:

$$\alpha(\tilde{u}, u_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}_{X_k}(\tilde{u}))}{\phi(y; \mathcal{G}_{X_k}(u_k))}\right\}$$

$$\mathbf{3} \ u_{k+1} := \begin{cases} \tilde{u} & \text{with prob } \alpha(\tilde{u}, u_k) \\ u_k & \text{with prob } 1 - \alpha(\tilde{u}, u_k) \end{cases}$$

伺 ト イヨ ト イヨ ト

э

Change distribution of elements

Given
$$(u_k, X_k)$$
 produce $x_1^{k+1}, \ldots, x_N^{k+1}$ by:
Proposal: $\tilde{x}_i = x_i + F(x_i)$, for all $i = 1, \ldots, N$.
 $F := (\Psi_1, \Psi_2) \sim N(0, K_1 \otimes K_2)$

Ompute acceptance probability:

$$\alpha(\tilde{X}, X_k) := \min\left\{1, \frac{\phi(y; \mathcal{G}_{\tilde{X}}(u_k)}{\phi(y; \mathcal{G}_{X_k}(u_k))} \cdot \frac{p(X_k | \tilde{X})}{p(\tilde{X} | X_k)}\right\}$$

$$X_{k+1} := \begin{cases} \tilde{X} & \text{with prob } \alpha(\tilde{X}, X_k) \\ X_k & \text{with prob } 1 - \alpha(\tilde{X}, X_k) \end{cases}$$

Coarsen or refine discretization

Given (u_k, X_k) we produce N_{k+1} and $x_1^{k+1}, \ldots, x_{N_{k+1}}^{k+1}$ by:

9 Proposal: First construct ρ_X and generate $\tilde{N} \sim p(\cdot|N_k)$.

• If
$$\tilde{N} < N$$
 let $\tilde{x}_i = x_i$ for $i = 1, \dots, \tilde{N}$.

- If $\tilde{N} \ge N$ let $\tilde{x}_i = x_i$ for i = 1, ..., N and generate $\tilde{x}_{N+j} \sim \rho_X$ for $j = 1, ..., \tilde{N} N$.
- Ompute acceptance probability:

$$\alpha(\tilde{X}, X_{k}) := \min \left\{ 1, \frac{\phi(y; \mathcal{G}_{\tilde{X}}(u_{k}))}{\phi(y; \mathcal{G}_{X_{k}}(u_{k}))} \cdot p(X, \tilde{X}) \\ \cdot \frac{p(\tilde{N}|N_{k})}{p(N_{k}|\tilde{N})} \cdot \frac{\exp(-C(\tilde{N}))}{\exp(-C(N))} \right\}$$

$$(3)$$

$$\mathbf{S} \quad X_{k+1} := \begin{cases} \tilde{X} & \text{with prob } \alpha(\tilde{X}, X_{k}) \\ X_{k} & \text{with prob } 1 - \alpha(\tilde{X}, X_{k}) \end{cases}$$

イヨト イヨト ニヨ

- Bayesian formulation of fractional inverse problems.
- ② Data driven discretization of forward maps.

Thank you for your attention!

Nicolás García Trillos Brown University On the Bayesian formulation of fractional inverse problems and d

★ 3 → < 3</p>