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@ Bayesian formulation of fractional inverse problems.

@ Data driven discretization of forward maps.
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This presentation mostly based on:

@ The Bayesian Formulation and Well-Posedness of Fractional
Elliptic Inverse Problems (2017 Inverse Problems) with D.
Sanz-Alonso.

@ Data driven discretizations of forward maps in Bayesian
inverse problems (In preparation) with D. Bigoni, Y. Marzouk
and D. Sanz-Alonso.
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Part 1: Bayesian formulation of
fractional inverse problems.
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Inverse problem: learn a permeability field from partial and noisy
observations of pressure field.

PDE version: Learn diffusion coefficient and order of a (FPDE)
based on partial and noisy observations of its solution.
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Inverse problem: learn a permeability field from partial and noisy
observations of pressure field.

PDE version: Learn diffusion coefficient and order of a (FPDE)
based on partial and noisy observations of its solution.

u=(s,A)

F(u)

O o F(u)
G =0o0oF
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Inverse problem: learn a permeability field from partial and noisy
observations of pressure field.

PDE version: Learn diffusion coefficient and order of a (FPDE)
based on partial and noisy observations of its solution.

u=(s,A)

F(u)

O o F(u)
G =0o0oF
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e Forward map: p = F(u).

Lsp =f, in D,
{A (1)

Oap =0, on 0D,

where 0ap := A(x)Vp - v, and v is the exterior unit normal to
oD.

@ Observation map: O(p) := (p(x1),. .., p(xn)) for some
x; € D.

e Noise model: ¢(y,G(u)) = exp (‘T}ﬂ”y — Q(U)H2>-
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e Forward map: p = F(u).

LSp =1f, inD,
{A (2)

dap =0, on 0D,

where dap := A(x)Vp - v, and v is the exterior unit normal to
oD.
Here,

oo
AP = Z NA kPKVA K-
k=1

e Observation map: O(p) := (p(z1),.-.,p(zm)) for some
zi € D.

e Noise model: ¢(y,G(u)) = exp (—2%2”)’ — Q(U)H2>-
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Bayesian approach to inverse problems

@ A. M. Stuart. Inverse problems: a Bayesian perspective.
(2010).

e J. Kaipio and E. Somersalo. Statistical and computational
inverse problems (2006).
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Bayesian formulation

e Prior: u~m,
o Likelihood model: 7,

e Bayes rule (informally):

v (u) i= Ty X Ty Ty

Posterior distribution.
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VY is the fundamental object in Bayesian inference.

@ Estimates:
Eyny (R(U))

@ Uncertainty quantification:

Varyy (R(u))

Nicolas Garcia Trillos Brown University On the Bayesian formulation of fractional inverse problems and d



Advantages of Bayesian formulation

Well defined mathematical framework:
e Stability (Well-posedness).

@ Posterior consistency (contraction rates, scalings for
parameters, etc).

@ Consistency of numerical methods.
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Prior

@ 7, is a distribution on (0,1) x H.
@ For example,
Ty =Ts @A

A=e"ly, where v~ N(0,K)
@ Karhunen-Loeve expansion:

V=3 AkiGVi, G~ N(0,1).
i=1
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Well-posedness of Bayesian formulation

Theorem (NGT and D. Sanz-Alonso 17')

Suppose that G is continuous in supp(m,). Then, posterior
distribution v¥ is absolutely continuous with respect to prior:

dv”(u) oc ¢(y; G(u))dmu(u),
Recall: G : (s,A) — R™.
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Well-posedness of Bayesian formulation

Theorem (NGT and D. Sanz-Alonso 17')
Suppose that G € L2 . Then the map

y =Y

is Locally Lipschitz in the Hellinger distance. That is, For
Iyil, |y2| < r we have

dhen(v”*, %) < Gllyr — y2||-
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Well-posedness of Bayesian formulation

The analysis reduces to studying stability through regularity of
FPDEs.

e L. A. Caffarelli and P. R. Stinga. Fractional elliptic equations,
Caccioppoli estimates and regularity. (2016)
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Well-posedness and posterior consistency

@ M. Dashti and A. M. Stuart. Uncertainty quantification and
weak approximation of an elliptic inverse problem. (2011).

@ S. Agapiou, S. Larsson, and A.M. Stuart. Posterior
contraction rates for the Bayesian approach to linear ill-posed
inverse problems. (2013) .

@ S. Volmer. Posterior consistency for Bayesian inverse problems
through stability and regression results. (2013).
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Numerical methods: MCMC

@ Need a way to approximate expectations with respect to 1.

@ Standard procedure: MCMC.
Generate a path of a Markov chain with invariant distribution
v up,..., Uk, ... and then use

@ However, careful with:

@ Discretization of u.
@ Discretization of forward map.
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Idealized MCMC algorithm

For the sake of simplicity assume A = ¢e" - I; and known s € (0,1) .
Metropolis Hastings with pCN proposal:
Having defined vy, vy is generated according to:

@ Proposal: 7 = /1 — 2v, + B€, where £ ~ .
@ Acceptance probability:

v with prob (@, uk)
vk with prob 1 — a(, ug)

Q Vi1 := {
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Idealized MCMC algorithm

For the sake of simplicity assume A = e" - Iy and known s € (0,1) .
Metropolis Hastings with pCN proposal:
Having defined v, vk11 is generated according to:

@ Proposal: V= /1 — 2v, + 3¢, where £ ~ .
Compare to: vV = vy + €
S. L. Cotter, G. O. Roberts, A. M. Stuart, and D.
White. MCMC methods for functions: modifying old
algorithms to make them faster. Statistical Science.

@ Acceptance probability:
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Idealized MCMC algorithm

For the sake of simplicity assume A = e - I; and known s € (0,1) .

Metropolis Hastings with pCN proposal:

Having defined vy, vk11 is generated according to:

@ Proposal: V= /1 — [32v, + 3¢, where £ ~ .

Compare to: V = vy + B¢
S. L. Cotter, G. O. Roberts, A. M. Stuart, and D.
White. MCMC methods for functions: modifying old
algorithms to make them faster. Statistical Science.
Robustness to truncation:

L
€= AkiGVi, G~ N(0,1)

i=1
@ Acceptance probability:

¢(y: G(1) }

a(l, ug) := min {1, )
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Part 2: Data driven discretization of
forward maps
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F(u) O o F(u)

G=0o0oF

o(y; G(u))
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MCMC: Metropolis with pCN proposal

To produce wugy1:

@ Proposal: i1 = /1 — B2uy + BE , &€ ~ m,.

@ Compute acceptance probability:

7 ‘= min M
o, uy) == {1’ d)(y;g(uk))}

i with prob oo, ug)

Q uki1 =
e {uk with prob 1 — a(, u)
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MCMC:Metropolis with pCN proposal

To produce wugy1:

@ Proposal: i1 = /1 — B2uy + BE , &€ ~ m,.

@ Compute acceptance probability:

5 ‘= min M
ol ug) = {1 o(y; gx(uk))}

v with prob «a(@, ug)

Q Vi1 =
e {vk with prob 1 — o, u)
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MCMC:Metropolis with pCN proposal

To produce wug1:

© Proposal: & = /1 — B2uy + BE, & ~ Ty

@ Compute acceptance probability:

~ ‘= min M
a(l, u) = {1’ gf)(y;gx(uk))}

o with prob o, uk)

Q ukq1 =
ke {uk with prob 1 — o, ug)

How do we choose the discretization? How fine?
Inhomogeneous in space?
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fx(u)

O o F(u)
Gx := 0o Fx

o(y; Gx(u))
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fx(u)

O o F(u)
Gx := 0o Fx

o(y; Gx(u))

More specifically: X = (N, {x1,...,xn}).
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True and Surrogate Bayesian inverse problems

Prior: u ~ m,. Prior: (u, X) ~ m, x.
Likelihood: ¢(y; G(u)) Likelihood: ¢(y; Gx(u))
Posterior: Posterior:

dv”(u) o< ¢(y; G(u))dmu(u) dv”(u, X) o< ¢(y; Gx (u))dmu x (u, X)
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Prior for surrogate problem

For simplicity our prior takes the form:

Tu X = Txq,.xy|N TN - Ty

m, is as for the true problem.
my,x treats X and v independently.

Txtypy|N = AX1 - .. dXpy ON DN.

my takes into account cost of discretization of F using N
elements:

Ty o< exp(—C(N))
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Likelihood

é(y; Gx(u))
Recall Gx = O o Fx.
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Likelihood

é(y; Gx(u))

Recall Gx = O o Fx.
However, we don't triangulate directly using X. First, we regularize
the points xi, ..., X,.
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Likelihood

é(y; Gx(u))

Recall Gx = O o Fx.

However, we don't triangulate directly using X. We regularize the
points X1, ..., Xp.

X = ({x1,...,xn}, N) induces a density estimator px.

© px is used to choose points in a master grid.

or

@ Using px we start a flow of the points x ..., x, attempting to
minimize an energy of the form:

(s oxn) ~ Do exp(=[xi = x5/ (hn - px())?)
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Sampling from ¥ (u, X)

Metropolis within Gibbs:

Alternate:
© Update the unknown; discretization is fixed. u|X,y
@ Change distribution of elements. x1,...,xy|N, u,y

@ Coarsen or refine discretization. xi,...,xy, N|u,y
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Given (ug, Xk) produce uk41 by:

@ Proposal: i1 = /1 — B2uy + BE , € ~ m,.

@ Compute acceptance probability:

(@, ug) = min{l o(y: G, (0) }

"By Gx, (uk))

i with prob o(@, ug)

Qu =
e {uk with prob 1 — o(@, ug)
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Change distribution of elements

Given (ug, Xk) produce x{‘“, .. ,x,’\‘,“ by:

@ Proposal: X; = x;+ F(x;) , foralli=1,... N.

F = (W]_,WQ) ~ N(O, K1 & Kz)

@ Compute acceptance probability:

alX -— min o(y; Gx(u) p(Xk|X)
(X, Xk) = {L ?(y; Gx,(uk)) P()~<|Xk)}

X with prob a(X, Xy)

Q@ X = -
frt {Xk with prob 1 — a(X, Xx)
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Coarsen or refine discretization

k+1 k+1 .
Given (uk, Xi) we produce N1 and x; ", XN by:

@ Proposal: First construct px and generate N ~ p(-|Nj).

oIfN<N|etx,_x,for/—1 N.
o If N> N let X =x fori=1,..., N and generate Xn.; ~ px
forj=1,...,N—N.

@ Compute acceptance probability:

% x) e min 1 205 9x(u) ~
a(X, X)) = {1,¢(y;ng(Uk)) p(X, X)

N " (3)
P(NING) exp(—C(’V))}

p(Ni|N)  exp(—=C(N))

X with prob a(X, Xy)

QO Xki1:= <
et {Xk with prob 1 — a(X, Xx)
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Conclusions and future work

@ Bayesian formulation of fractional inverse problems.

@ Data driven discretization of forward maps.
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Thank you for your attention!
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